uence Spaces ¥

'eople Create

> Roadblock spec
SmartPick
Handover notes
v Archived
[Manager/Mentor Document] New
v Angular 2 Framework Upgrade
Angular 2 Migration Findings
New Zoosk Responsive Site: C<
Results from testing CSS sco|
Suggested .scss file structure in
UX Deliverables for Site Re-des
Best Practices for Team Collaborat
Browser Gotchas and Quirks
> Browser Roadmap 2019
> Browser Sprint Retrospectives
Browser Team Workflow
Browser Tips and Tricks
Code Review Guidelines
CSS Bootcamp Curriculum
> Cupid
Cupid Setup and Build Guide
> Deprecated - Browser
> Engineering Project Specs / Propo

> Framework Upgrade Path(s)

Git
B
£ Space tools ~ «
£ Space tools ~ «

Pages /... / Angular 2 Framework Upgrade of © # Edit

Results from testing CSS scoping in Angular 2

Created by Sue Anna Joe, last modified on Dec 27, 2018

Y¢ Save for later © Watch [2 Share ee

Intro
thdr
View Encapsulation in Angular 2
« Overview
« Takeaways
Options for adding styles
« Six ways to add styles to a component
« Takeaways
Style priorities in the browser
« Outline form
« Screenshots
« CSS ordering with styleUrls: []
+ CSS ordering with styles: []
Scoped styles
Problems with scoping styles
« Takeaways

Intro

Since I'm new to Angular 2, | looked into the options for adding CSS to an app built on this framework. | was particularly interested in the idea of scoping CSS within Angular 2 components and how that affects
the ecosystem of style rendering. | forked a simple Angular 2 demo app on Stackblitz, made it look like our Store v3 Upgrades Ul, and tested scoped CSS. This demo helped me to:

« learn about the options for adding styles to an Angular 2 app
« understand the effects of scoped CSS
« determine the best route for devs to build Ul on Angular 2

tl;dr

+ We should use either emulated mode (which is the default) or "none" for View Encapsulation for the following few reasons:
« Native Shadow DOM does not have wide browser support.
« CSS scoping in Shadow DOM keeps us from customizing a component element's styles based on context.
« We should use global styles as we do now. Scoping styles causes the following issues:
« It affects CSS selector specificity.
« It loads our styles in the browser in an order that can work against us.
« If we have a scoped parent component, we can't customize the styles of its children components.
« Scoped styles via the styleUrls component property does not recognize global mixins and variables.
« We should use a separate component HTML file instead of adding our DOM to a component decorator's template property. This will make the code more readable and manageable.

View Encapsulation in Angular 2
Overview

According to this article, Angular 2 has a concept called View Encapsulation. This is how it handles Shadow DOM, and it does it in three ways:

« None: All elements are spit out - no Shadow DOM at all.
« Emulated: This actually tries to emulate Shadow DOM to give us the feel that we are scoping our styles. This is not a real Shadow DOM but a strategy to make all browsers smile at our code.
« Native: This is the real deal as shadow DOM is completely enabled. Older browsers can go to hell.

Emulated is the default mode.

Below are some general points from other sources:

Scoped CSS associated with both native Shadow DOM and emulated mode does not affect other elements outside itself or its children components, if any. In effect, this prevents classname/selector
collisions.

Native Shadow DOM also ignores styles outside itself (global CSS).

Native Shadow DOM does not have wide browser support.

In emulated mode a component can be affected by global styles but not always. See results from scope testing.

Takeaways

« Due to the lack of browser support for native Shadow DOM, we should not use this for our new responsive site.
= Setting a component as native Shadow DOM also prevents us from customizing its CSS in different contexts.
» Because of how we code our CSS, we don't have an issue with classname/selector collisions.

Options for adding styles
Six ways to add styles to a component

All but #6 would cause the CSS to be scoped to the component.

xR X kKRR KK KRk
1 - Inline styles on elements
2
@Component ({
template:
<hl style="color: blue;">Zoosk</hl>

1)

R R R R R R T S T T T TR PSPy

2 - Using style tags within the template
JS—. . -

*okok kKK)

@Component ({

template:
<style>
button {color: blue;}
</style>
1)
[k ok k ek ek ke

3 - Using a link tag

J AR Rk k ok ok ok kKKK KKKk ok ok ok ok kKKK KKKk Rk kA KA A AR kR

@Component ({

template:
<!-- Per the Angular guide we must use a relative URL so that the AOT compiler can find the stylesheet -->
<link rel="stylesheet"” href="../assets/hero.component.css">
<hl>Zoosk</hl>

2l

J Rk k ok ok ok kKKK KKKk Rk ok ok ok kKA KKK KRRk kA Ak KA A ARk Rk

4 - Using the styles array to add declaration blocks

R R R R R L R R LR T R S R T T T

@Component ({

styles: [
button
footer

{color: blue;}

{background: gray;}

1)
P
5 - Adding an array of external css or scss files

J ARk k ok ok ok ok kKKK KKKk k ok ok kKA A KKKk Rk kA A A ARk Rk

mponent ({

styleUrls: ['button.component.scss']

1)

ok kK kK Kk kKK Rk ok Kk ek K kK kK

6 - Using global styles

[/ ek ek ok ko kK K ek kK ok

You can choose to use none of the above methods and instead rely on globally scoped css/scss partials that are imported into a primary scss file. This i

Takeaways

« Considering general best practices and the fact we use Sass, we should avoid options 1 - 4.
« Creating a separate component HTML file would give us better organization, especially for longer DOM structures, than using the component decorator's template property.

Style priorities in the browser

For informational purposes, I've included a priority list, from highest to lowest, and screenshots showing the order in which Angular 2 styles are loaded in the browser.

Outline form

AR KKK KRR KKK KKKk
PRIORITY 1 *
R KA HA KA K AKX AR K AR A A F A XA KK AHE KA K
@Component ({
template:
<hl style="color: blue;">Zoosk</hl>

2l
—— OR -
<hl style="color: red;">Zoosk</hl> (This would be in a component HTML file)

[ko ko ok ok KKk ok ko KKk ko kK

PRIORITY 2:

/o ok ko ok kR Kk ok kK K ko ek kK

mponent ({
template:
<style>...</style>

2l

J AR Rk ok ok ok ok kKKK KKKk ok ok ok kKKK KKKk Rk kA A A A KRR xRk

PRIORITY 3 *

R R R R R R LS S R R R Ty

mponent ({

styleUrls: []

OR --

mponent ({
styles: []

2l
P —
PRIORITY 4:
P

Global styles

* You can only have one or the other .ts file.

in your If you have both, the one that is farther down the document will parse.

Screenshots

CSS ordering with styleUrls: []

v <button-outlined _nghost-c47
e 4 : outlined-button-—green add
selector: Add to Subscription </button> ==
template:
<style>
... section div div button-outlined button.outlined-butt ddon-button
Styles Event Listeners DOM Breakpoints Properties Accessibility
Filter thov .cls +
4 postion o
e m:{w.x.w e { margin 6
color: Mblue; S I
["button-outlined paddng 1

styleUrls: component. .outlined-button——green[_ngcontent-ca7] <styles.</style>
) {

CSS ordering with styles: []

«

selector: 'button-c

oi-|1ia[H22718% 16 |a}1|-i0
celors white;

3

.outlined-button--green[_ngcontent-c47] <style>.</style>

{

purpies 0

}

.addon-iten—upgrade-store .outlined- <styles.</styles FIfer Show all

button——green { » align-items flex-s..

3 » background-co.. rgb(.
» border-bottom.. M rab(.

<button _ngcontent-c3 clas:
blue;

'outlined-button—green addon-buttor

style="colo Add_to Subscription </button> = $0
/button-outlined:
/div:
section div div b lined button.outlined-buttc iddon-button
Styles Event Listeners DOM Breakpoints ~ Properties Accessibility
"outlined-button--green addon-button" —_—
Filter thov .cls +
4 position 0
elenent.style { magn 16
color: Mblue;

.outlined-button--green[_ngcontent-c3]
1{

border 1

<style>.</style>

.outlined-button: -0
color—Iuhiter
¥ 1
.outlined-button--green[_ngcontent-c3] <styles.</style>
{
geays 0
}
.addon-item—upgrade-store .outlined- <styles.</styles el Show all
button-——green » align-itens flex-s.
N » background-co.. rgb(..

» border-bottom.. rgb(..

Scoped styles

By default an Angular 2 component is implemented in emulated Shadow DOM mode. This means the DOM is not rendered as true Shadow DOM; however, CSS can still be scoped to a component in emulated
mode.

For our Zoosk product we often run into these scenarios when creating Ul:

« AUl element can appear both by itself and grouped with other things within a larger Ul element.
« AUl element needs custom styles depending on where it appears, like margin.

Because scoped CSS affects how styles are applied to elements on a page, | tested scoped styles on an element as well as its parent to find any limitations for us.

Problems with scoping styles

1. Scoping styles causes an _ngcontent-* attribute to be rendered on the parent HTML element in a component template. This attribute in turn is used as a selector in that element's CSS declaration block and
increas ificity. It is ur i for the app the affect selector specificity in our styles. e.g.:

footer[_ngcontent-c3] { bottom: 0; left: 0; position: fixed; right: 0; color: pink; } /* base CSS (scoped) for all footers */
.account-settings footer {color: blue;} /* non-scoped customization based on context */

/* Both declaration blocks have the same specificity, but the footer's scoped CSS will render in the browser after the custom override. Therefore, the s

2. Global mixins and variables are not recognized in separate component-based scss files when specifying them in the styleUrls array. We would have to import global files into the scoped stylesheet. | would
prefer not to do this as it's an extra thing we need to do with each component-based scss file.

Results from testing scoped vs. non-scoped styles
Elements Scoped Not scoped Receives component attribute Results

(global) _ngcontent-* (which increases
selector specificity in the CSS)

Parent component styles X X Any parent CSS trying to override a child's CSS will not be parsed.
Child component styles X X
Parent component styles X Any parent CSS trying to override a child's CSS will be parsed.

Child CSS can possibly take higher priority because:

Child component styles x X « ltis loaded after the parent's styles.
« lts declaration block includes the child's component attribute selector which increases the child
CSS specificity.
Parent component styles X X Any parent CSS trying to override a child's CSS will not be parsed.
Child component styles X
Parent component styles X Any parent CSS trying to override a child's CSS will be parsed and takes higher priority.
Child component styles X
Takeaways

« Acomponent's scoped CSS, which would likely be the base styles for that component, are loaded last in a browser. This gives those styles higher priority, and potentially our customizations would be
overridden.

« Scoped parent styles do not affect any children component styles which is limitation for us.
« Global styles would give us the flexibility we need.

) Like Amir Sattari likes this No labels #

Write a comment...

EVALUATION LICENSE Are you enjoying Confluence? Please consider purchasing it today.

Powered by Atlassian Confluence 6.3.3 - Reportabug - Aflassian News

Yhtlassian

